
Programming in Nature

Phil Jones1

Resumo

This paper describes current work-in-progress in a practice I call
"Programming in Nature" which sits somewhere between art and
computer science. It draws on elements of landscape intervention,
photography and "technoshamanic" ritual, computer vision,
experimental programming languages (in particular esoteric
programming languages (esolangs)), physical computing and user-
interface design.

The aim of Programming in Nature is to be able to do computer
programming away from the traditional office environment, keyboard
and screen, and to perform it out-of-doors in a natural landscape of
"cerrado", woodland and riverside. I invent programming
"languages" not made of words but of assemblages of natural
objects which can be interpreted by a computer and compiled into
executable software.

This paper discusses the the motivations for Programming in Nature,
its influences and the current state of development of various
components.

Keywords : techno-shamanism, computer vision, esolangs, programming
languages

Why are we unhappy?

I would like to start this with a highly informal, speculative conjecture. The
historical and anthropological, even spiritual, merits of this speculation can
be argued, but the rest of work is best understood in light of it.

Humans are a language-using animal. And ever since we evolved our
linguistic capacities (which include symbolic representations of the world, and
symbol-based action within it) we have been keen to substitute language for
the other kinds of effort we make to accomplish our daily tasks. The shaman
uses symbols and ritual practices to "negotiate" with the animal who is to be
hunted, because talking to it is, in some sense, "easier" than running around
chasing it with a spear.

What we call "magical" thinking, our religions, our "shamanic" practices etc.
are all examples of this very human aspiration : that the world can be
addressed through symbols and entreaties and communication, rather than
manhandled with a tiring brute force.

1 Phil Jones, http://synaesmedia.net, interstar@gmail.com, @interstar

mailto:interstar@gmail.com
http://synaesmedia.net/

Over recorded human history we have actually succeeded in extending the
reach of language; such that our modern lives are largely lived in a world of
symbols. Many of us read and write for a living. As individuals, we produce a
fraction of the food or goods we consume. Most of what we acquire is
through manipulating symbols and navigating flows of extraordinary
abstractions that would astound our ancestors.

In this sense, the contemporary world is made of magic.

So why are we still unhappy?

We are unhappy because the transformation of the world into an
infrastructure of ideas comes at a high cost to the individual : bureaucracy,
hierarchy, markets, finance, discipline, control, impersonalization,
atomization, alienation and all the usual ills attributed to industrial
capitalism. In contrast, in our idyllic reconstructions of spiritual worlds, magic
is the result of self-directed research, of powerful inner essence, of
individualistic expression, or of small-scale communal ritual that
harmoniously blends work, leisure, social bonding and the rhythm of life. In
other words, our conception of magic is a reflection of our ideal of how we
should work and produce.

We are unhappy because, as Bret Victor points out, engagement with the
symbolic order has assaulted our bodies and senses, placing them in drab,
unhealthy offices, sitting for hours hunched over "tiny rectangles"2 of paper
or screen, restricted to micro-movements of fingers wagging a pen or
fluttering on a keyboard. We have lost the majority of modalities that our
bodies and senses provide, and which we perhaps expect in life. We have lost
the connection with the landscapes and environments in which we evolved.
The forests and lakes and rivers and mountains, and replaced them with
concrete cages. We are obese and unhealthy.

Furthermore, our society firmly demarcates work and production from leisure
and consumption. In work, we live a genuinely "magical" experience, where
objects can be conjured into existence and flown around the world with a few
keystrokes (or symbolic invocations of the global supply-chain). But
aesthetically, the magic that governs the modern economic system is hostile
and inhuman.

At the same time, our leisure and culture reveals the aesthetic of magic and
the spiritual that we actually crave. Churches to invisible deities are packed.
The streets are filled with Pokemon Go players, hunting fantastical beasts
that can only be seen with the aid of enchanted lenses. Super-hero movies
dominate Hollywood; fantasy literature is our common culture. Even the
most technologically knowledgeable artists can seem obsessed with
esotericism and pseudo-science and railing against enlightenment rationality.

2 Victor, “The Humane Representation of Thought on Vimeo.”

Art tells us what we want. But as long as this desire is relegated the sphere
of consumption, as long as it is our "reward" for participation and
collaboration in the contemporary mode of production, then it can have little
chance to rescue us from our predicament. It has no power to effect change
in our economy and, therefore, our society.

Instead, we must infect the realm of production with the magical aesthetic.

We need to get out more.

The above is necessarily sketchy and superficial, but it forms the tangle of
intuitions and inspirations behind this project.

Programming in Nature is a practice, or a series of experiments, which fall
somewhere between fringe computer science, and a range of artistic and
political concerns / practices which I associate with the movement called
"technoshamanism3".

It is highly influenced by the thinking of Bret Victor on "humane" computing
who invites us to start speculating on and designing for a way of using and
interacting with computers which features all modalities of the body (visual,
aural, tactile, kinaesthetic and spatial) and thought (symbolic, iconic,
enactive).

It should also be understood within the tradition of John Ruskin4 and William
Morris5 and the Arts and Crafts Movement, who launched an attack on the
industrial revolution from a Romantic reconstruction of an idealized (and
perhaps imaginary) mediaeval model of work and craftsmanship. In many
ways, Morris can be seen as founder of this project. Even though the
particular aesthetic and the kinds of production we deal with are very
different from his.6

We choose to ask a particular question : "what if we could do programming
outside?" That is, outside buildings, away from the traditional screens,
keyboards, offices. Away from the aesthetic style of contemporary
bureaucracy. And within the aesthetic style that we seem to be attracted to?
In the forest; by the pool in the river below a waterfall; working with the
natural materials we find there?

To be clear about the goal. "Programming" implies creating real computer
programs, which can be compiled and executed on a real computer. And
today, this implies doing almost any "work" within the contemporary

3 Borges, Tcnxmnsm.

4“John Ruskin.”

5“William Morris.”

6 Ironically, hypertext entrepreneur Mark Bernstein once launched a modern equivalent of the
Arts and Crafts movement he called "neo-Victorianism", where he celebrated the Victorian
“workshop” aesthetic (Bernstein, “NeoVictorian 1: Civilization and Its Discontents.”).

economy, where software mediates most productive activities. "in nature" is
intended to signal a minimization of the "props" or style of the contemporary
economy. It conjures images of druids in sacred groves, fauns, dryads,
magical springs and other appealing images. (Though one can also imagine
ceremonies in dark caves and witches cackling over cauldrons on the stormy
heath.) What if we could live and work like that?

Of course, this is all a distant and ambitious goal. But in pursuing it I believe
we will discover much of interest along the way. The rest of this paper
describes the some early experiments in this practice.

Programming with Cameras

Our initial approach can be described as "Programming with Cameras".
Smart-phones that incorporate digital cameras are now ubiquitous. They are
cheap, small and robust enough that people habitually carry them into the
natural landscape. But we want to avoid using the screen for input or much
interactivity. We do not want to take our "tiny rectangles" into the woods. We
ought to be able to make programs out of the physical items we find there, in
a practice that engages our whole body. The camera is used simply to
capture these physical assemblages of objects so that we can feed a
sequence of photographs to the computer to be analysed with computer
vision algorithms, and then interpreted and parsed into code.

Programming requires a programming "language". That is, a set of
meaningful symbols with some grammatical constraints that join them
together, and a "semantics" a way that a meaning can be assigned to the
symbols. When we consider a language made of computer-interpreted
photographs we note one great strength and one great weakness of
photographs.

 The weakness is that computer recognition becomes more complex as
the number of symbols we wish to distinguish increases. Separating
broadly red things from broadly blue things is fairly simple. Interpreting
and distinguishing detailed figures is harder.

 The strength is that we have accurate spatial relationships between
objects in two dimensions.

Fig 1: This leaf is interpreted as a low-pass filter

We, want, therefore, a language which both tries to minimize the number of
distinct symbols that need to be disambiguated. But one which can take
advantage of the spatial layout in two dimensions. There are some
interesting "esolangs"7 which are two-dimensional. Perhaps the most famous
"artistic" esolang is Piet8, a language whose programs are a layout of
coloured blocks (alleged to look like the works of Piet Mondrian), but Piet
programs require fairly fine-grained alignments of elements, which may be
hard to create out the materials available. And they are hard for humans to
write9

More promising might be visual / data-flow languages such Pure Data where
a number of components are wired together by connections. The very first
experiments were done in the context of using PD for electronic music.
Images were analysed to extract blobs of colour which could be interpreted
as objects within a PD patch. For example, in figure 1 we identify a leaf (and
interpret it as a low-pass filter).

Note that all computer vision examples given here are using the free-
software OpenCV library10.

But a green-blob to low-pass filter mapping is too crude and simplistic. And
in these early experiments, the flow from one component to another was
simply inferred rather than read from the image. To work with networks we
needed to be able to deduce the data-flow topology from the image.

7An "esolang", or "esoteric language" is a programming language created, often as a joke or
artistic work

8“Piet::Interpreter - Interpreter for the Piet Programming Language.”

9Most Piet examples are actually compiled from another language.

10OpenCV Developers Team, “Open Source Computer Vision Library.”

Analysing a Network

The following is a simple example of analysing an image to extract a network
structure from it.11

A simple flow network of sticks was assembled and photographed. (Fig. 2)

Fig 2 : A simple network of sticks

It was then pre-processed with the following algorithm (Fig 3) :

 Convert to hue-saturation-intensity (HSV) format

 Extract just the saturation plane.

 Normalize the histogram of the image.

 Threshold to get a clearer binary image.

The binary image is then analysed

 Find the contours

 Calculate the enclosing ellipse of each contour

 Filter to preserve only contours that are potential arcs in the network
(the criteria is based on size and elongation)

11 I am extremely grateful to pklab on the OpenCV Forum for the advice and help with this
analysis (pklab, “Visually Anayzing Network Diagrams. - OpenCV Q&A Forum.”)

 Calculate a line that passes along the main axis of the ellipse and a pair
of end-points for each.

Fig 3 : Processing (saturation plane, normalized histogram, threshold)

These lines are now treated as the arcs in a flow network and we calculate
the rest of the topology as follows :

 Assume that the two closest end-points in our entire collection must be
connected at the same node.

 Multiply the distance between them by a constant to get an estimate of
the size of a typical node.12.

 Check for all points which are within that distance and assume that they
are meeting at the same node.

 Extract a list of potential nodes, assuming the centre of a node is the
average of all points that are located within it.

 Now calculate which arcs connect which nodes.

 Arcs are considered directional top to bottom. Automatically assume that
the top end of an arc is an outflow of the node it is connected to, while
the bottom end is an inflow to the node that is connected to.

Figure 4 shows the result of this analysis.

12We estimate two or three times this minimum distance

Fig 4 : The computer's view of the sticks.

QaSaC

While the analysis described in the previous section gives us a way of
extracting networks from images, we still need to describe the nodes which
are being connected. PD isn't an ideal language partly because it is
specialized for certain kinds of applications and other algorithms are awkward
to implement in it. We also remember the other constraint of photographic
programming language : that disambiguating objects in an image is hard,
and we would like to minimize the number of distinct tokens that need to be
distinguished.

QaSaC13 has been developed as the underlying language and virtual machine
for images to be compiled into. QaSaC brings together a PD-like data-flow
network with a very simple stack-based concatenative language14, inspired by
Forth and, particularly, Joy15. The reason for choosing this type of language is
that stack-based programs tend to have fewer named things (such as
variables) which we believe reduces the number of distinct tokens that need
to be recognised.

Each node in a QaSaC system runs a simple program which consists of an
initialization phase and an endless loop (rather like a Processing sketch). The

13QaSaC is an acronym for "Queues and Stacks and Combinators", the elements from which
the language is made.

14“Concatenative Language.”

15von Thun, “Joy Programming Language.”

program can pull data from its input queues, push data onto its output
queues, and stores and manipulates all other data on a local stack.

A simple example :

0 | DUP -> 1 +

Note that the vertical bar separates the initialize phase from the looping
phase. The program runs as follows :

 0 is the only instruction in the initialize phase, as a number, it is pushed
onto the stack.

 DUP is the "duplicate" instruction, it duplicates what is at the top of the
stack.

 -> pops the top value from the stack, and sends the result to one of the
output queues.

 1 pushes the number 1 onto the stack

 + pops the top two items off the stack (the 0 and the 1), adds them, and
pushes the result back onto the stack

This program can be seen to produce the sequence of integers, counting up
from zero, on its output queue.

QaSaC uses combinators16 rather than explicit control structures. These
operators take quoted blocks of code from the stack and execute them based
on other criteria. For example a filter that only lets even numbers through :

X DUP [->] SWAP 2 % 0 = [DROP] SWAP COND

The X means to pull the next value from the X input queue and push it onto
the stack.

[->] is a code-block containing a "pop and send to output queue". It's not
executed unless the COND (conditional combinator) decides it should be.

SWAP swaps the top two items on stack. % is the "modulus" function. = is
the test for equality. DROP pops the top of the stack and throws the value
away. Once again, here, it's in a block that COND will decide whether to
execute.

Figure 5 shows the whole of a simple QaSaC program containing these nodes
in a custom-build editor.

16Smullyan, To Mock a Mockingbird.

Fig 5 : A complete QaSaC program in a simple browser-based editor

QaSaC, in common with PD and other data-flow languages has a different
feel from more "static" languages. For example, a short, simple program can
be used to define a reactive user interface if events from mouse or keyboard
are fed to it through standard channels. QaSaC is currently implemented in
Clojure, and can be run with Quil17, a Clojure wrapper for the Processing API.

Work in Progress and Future Development

Both the network analysis and QaSaC are implemented and can be shown to
run18. Current work in progress is focused on the next, most important step.
Finding a way to parse and interpret images that represent the short QaSaC
nodes.

One line of research is to try directly using natural materials as in Figure 6. I
am experimenting with analysing images like this. But it is hard (and perhaps
not plausible) to represent all the QaSaC operators reliably and
unambiguously with individual flowers and leaves.

17“Quil/Quil.”

18Although some manual tweaking of parameters is still required

Fig 6 : A QaSaC node defined with plants

An alternative is to accept that clear, unambiguous symbols are still
necessary and to look for a way to handle this within our aesthetic. We can
take inspiration from some uses that are made of alphabets and writing in
contemporary esoteric practice. For example, rune magic19 takes runes from
pre-christian Germanic peoples and uses them within divination rituals.
Runes are fairly clearly distinct symbols designed to be chiselled or scratched
into stone or wood. So I am developing an alphabet that combines familiar
Latin letters and Arabic numerals with runes and other symbols to represent
the specific operations within QaSaC. We will then make physical tokens
representing them, and use OpenCV's K Nearest Neighbour classification
algorithm20, often used for OCR applications, to interpret them.

Our original example of a program that produces a sequence of integers is
represented as figure 7.

Fig 7 : Sequence generator in a custom alphabet

We need to continue to experiment with both representations and the
algorithms to interpret them to have a reliable way of representing these
node definitions.

Beyond this, the urgent task is to package this functionality into an Android
app. to run on a smart-phone. At present, the computer vision consists of

19“Magick Runes | Just Wicca.”

20“K-Nearest Neighbors — OpenCV 2.4.13.1 Documentation.”

small Python scripts using the OpenCV library. While the QaSaC interpreter /
virtual-machine is a separate application written in Clojure. But they need to
be fully integrated.

Finally, there is still much to discuss and criticise and explore in this research
programme. It is impossible to enter into the many debates in this paper. But
I invite more people to join the project and involve themselves in technical
development, in the practice of actually creating programs with these tools,
and in the many discussions that the project can inspire.

The home-page of the project is at http://pin.alchemyislands.com/ with links
to the source-code and details of ongoing work and discussion.

Acknowledgements

I would like to acknowledge several people who have helped and inspired this
current work.

Fabi Borges, for promoting the technoshamanic culture, rituals and
encounters in which I have participated. These have greatly helped me
develop my thinking on technology and a magical style which is given here.

pklab, a contributor to the OpenCV forum who provided extremely helpful
and comprehensive advice with some problems I was having with the visual
recognition.

Aharon Amir, one of my great artistic inspirations, who has challenged me
with his radical thinking and questioning about programming languages.

Bibliography

Bernstein, Mark. “NeoVictorian 1: Civilization and Its Discontents.” Accessed
September 26, 2016.
http://www.markbernstein.org/Sep0701/NeoVictorian.html.

Borges, Fabiane. Tcnxmnsm. Rede Tecnoxamanismo. Accessed September
26, 2016.
https://tecnoxamanismo.wordpress.com/2016/06/12/tecnoxamanismo
-book-lancamento/.

“Concatenative Language.” Accessed September 26, 2016.
http://concatenative.org/wiki/view/Concatenative%20language.

“John Ruskin.” Wikipedia, the Free Encyclopedia, September 20, 2016.
https://en.wikipedia.org/w/index.php?
title=John_Ruskin&oldid=740333257.

“K-Nearest Neighbors — OpenCV 2.4.13.1 Documentation.” Accessed
September 26, 2016.
http://docs.opencv.org/2.4/modules/ml/doc/k_nearest_neighbors.html
.

“Magick Runes | Just Wicca.” Accessed September 26, 2016.
http://justwicca.com/magick-runes-3/.

OpenCV Developers Team. “Open Source Computer Vision Library.” Accessed
September 26, 2016. http://opencv.org/.

“Piet::Interpreter - Interpreter for the Piet Programming Language.”
Accessed September 26, 2016.
http://www.majcher.com/code/piet/Piet-Interpreter.html.

pklab. “Visually Anayzing Network Diagrams. - OpenCV Q&A Forum.” Q & A.
Answer to Question on Analyzing Network Diagrams, September 15,
2016. http://www.answers.opencv.org/question/101717/visually-
anayzing-network-diagrams/?answer=102005#post-id-102005.

“Quil/Quil.” GitHub. Accessed September 26, 2016.
https://github.com/quil/quil.

Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles.
Oxford: Oxford University Press, 2000.

Victor, Bret. “The Humane Representation of Thought on Vimeo.” Accessed
September 23, 2016. https://vimeo.com/115154289.

von Thun, Manfred. “Joy Programming Language.” Accessed September 23,
2016. http://www.latrobe.edu.au/humanities/research/research-
projects/past-projects/joy-programming-language.

“William Morris.” Wikipedia, the Free Encyclopedia, September 23, 2016.
https://en.wikipedia.org/w/index.php?
title=William_Morris&oldid=740882758.

	Resumo
	Why are we unhappy?
	We need to get out more.
	Programming with Cameras
	Analysing a Network
	QaSaC
	Work in Progress and Future Development
	Acknowledgements
	Bibliography

